Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38675169

RESUMEN

Lipid-based nanocarriers have emerged as helpful tools to deliver sensible biomolecules such as proteins and oligonucleotides. To have a fast and robust microfluidic-based nanoparticle synthesis method, the setup of versatile equipment should allow for the rapid transfer to scale cost-effectively while ensuring tunable, precise and reproducible nanoparticle attributes. The present work aims to assess the effect of different micromixer geometries on the manufacturing of lipid nanocarriers taking into account the influence on the mixing efficiency by changing the fluid-fluid interface and indeed the mass transfer. Since the geometry of the adopted micromixer varies from those already published, a Design of Experiment (DoE) was necessary to identify the operating (total flow, flow rate ratio) and formulation (lipid concentration, lipid molar ratios) parameters affecting the nanocarrier quality. The suitable application of the platform was investigated by producing neutral, stealth and cationic liposomes, using DaunoXome®, Myocet®, Onivyde® and Onpattro® as the benchmark. The effect of condensing lipid (DOTAP, 3-10-20 mol%), coating lipids (DSPE-PEG550 and DSPE-PEG2000), as well as structural lipids (DSPC, eggPC) was pointed out. A very satisfactory encapsulation efficiency, always higher than 70%, was successfully obtained for model biomolecules (myoglobin, short and long nucleic acids).

2.
Pharmaceutics ; 15(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38140077

RESUMEN

The design, production, and characterisation of tissue-engineered scaffolds made of polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL) and their blends obtained through electrospinning (ES) or solvent casting/particulate leaching (SC) manufacturing techniques are presented here. The polymer blend composition was chosen to always obtain a prevalence of one of the two polymers, in order to investigate the contribution of the less concentrated polymer on the scaffolds' properties. Physical-chemical characterization of ES scaffolds demonstrated that tailoring of fibre diameter and Young modulus (YM) was possible by controlling PCL concentration in PLGA-based blends, increasing the fibre diameter from 0.6 to 1.0 µm and reducing the YM from about 22 to 9 MPa. SC scaffolds showed a "bubble-like" topography, caused by the porogen spherical particles, which is responsible for decreasing the contact angles from about 110° in ES scaffolds to about 74° in SC specimens. Nevertheless, due to phase separation within the blend, solvent-casted samples displayed less reproducible properties. Furthermore, ES samples were characterised by 10-fold higher water uptake than SC scaffolds. The scaffolds suitability as iPSCs culturing support was evaluated using XTT assay, and pluripotency and integrin gene expression were investigated using RT-PCR and RT-qPCR. Thanks to their higher wettability and appropriate YM, SC scaffolds seemed to be superior in ensuring high cell viability over 5 days, whereas the ability to maintain iPSCs pluripotency status was found to be similar for ES and SC scaffolds.

3.
Biomed Mater ; 19(1)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37992318

RESUMEN

Bioprinting offers new opportunities to obtain reliable 3Din vitromodels of the liver for testing new drugs and studying pathophysiological mechanisms, thanks to its main feature in controlling the spatial deposition of cell-laden hydrogels. In this context, decellularized extracellular matrix (dECM)-based hydrogels have caught more and more attention over the last years because of their characteristic to closely mimic the tissue-specific microenvironment from a biological point of view. In this work, we describe a new concept of designing dECM-based hydrogels; in particular, we set up an alternative and more practical protocol to develop a hepatic lyophilized dECM (lyo-dECM) powder as an 'off-the-shelf' and free soluble product to be incorporated as a biomimetic component in the design of 3D-printable hybrid hydrogels. To this aim, the powder was first characterized in terms of cytocompatibility on human and porcine mesenchymal stem cells (MSCs), and the optimal powder concentration (i.e. 3.75 mg ml-1) to use in the hydrogel formulation was identified. Moreover, its non-immunogenicity and capacity to reactivate the elastase enzyme potency was proved. Afterward, as a proof-of-concept, the powder was added to a sodium alginate/gelatin blend, and the so-defined multi-component hydrogel was studied from a rheological point of view, demonstrating that adding the lyo-dECM powder at the selected concentration did not alter the viscoelastic properties of the original material. Then, a printing assessment was performed with the support of computational simulations, which were useful to definea priorithe hydrogel printing parameters as window of printability and its post-printing mechanical collapse. Finally, the proposed multi-component hydrogel was bioprinted with cells inside, and its post-printing cell viability for up to 7 d was successfully demonstrated.


Asunto(s)
Bioimpresión , Matriz Extracelular , Porcinos , Animales , Humanos , Polvos , Hidrogeles , Biomimética , Impresión Tridimensional , Hígado , Bioimpresión/métodos , Andamios del Tejido , Ingeniería de Tejidos
4.
Pharmaceutics ; 15(10)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37896239

RESUMEN

BACKGROUND: To make the regenerative process more effective and efficient, tissue engineering (TE) strategies have been implemented. Three-dimensional scaffolds (electrospun or 3D-printed), due to their suitable designed architecture, offer the proper location of the position of cells, as well as cell adhesion and the deposition of the extracellular matrix. Moreover, the possibility to guarantee a concomitant release of drugs can promote tissue regeneration. METHODS: A PLA/PCL copolymer was used for the manufacturing of electrospun and hybrid scaffolds (composed of a 3D-printed support coated with electrospun fibers). Dexamethasone was loaded as an anti-inflammatory drug into the electrospun fibers, and the drug release kinetics and scaffold biological behavior were evaluated. RESULTS: The encapsulation efficiency (EE%) was higher than 80%. DXM embedding into the electrospun fibers resulted in a slowed drug release rate, and a slower release was seen in the hybrid scaffolds. The fibers maintained their nanometric dimensions (less than 800 nm) even after deposition on the 3D-printed supports. Cell adhesion and proliferation was favored in the DXM-loading hybrid scaffolds. CONCLUSIONS: The hybrid scaffolds that were developed in this study can be optimized as a versatile platform for soft tissue regeneration.

5.
Polymers (Basel) ; 15(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37896289

RESUMEN

Hypertrophic scars (HTSs) are pathological structures resulting from chronic inflammation during the wound healing process, particularly in complex injuries like burns. The aim of this work is to propose Biofiber PF (biodegradable fiber loaded with Pirfenidone 1.5 w/w), an electrospun advanced dressing, as a solution for HTSs treatment in complex wounds. Biofiber has a 3-day antifibrotic action to modulate the fibrotic process and enhance physiological healing. Its electrospun structure consists of regular well-interconnected Poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) fibers (size 2.83 ± 0.46 µm) loaded with Pirfenidone (PF, 1.5% w/w), an antifibrotic agent. The textured matrix promotes the exudate balance through mild hydrophobic wettability behavior (109.3 ± 2.3°), and an appropriate equilibrium between the absorbency % (610.2 ± 171.54%) and the moisture vapor transmission rate (0.027 ± 0.036 g/min). Through its finer mechanical properties, Biofiber PF is conformable to the wound area, promoting movement and tissue oxygenation. These features also enhance the excellent elongation (>500%) and tenacity, both in dry and wet conditions. The ancillary antifibrotic action of PF on hypertrophic scar fibroblast (HSF) for 3 days downregulates the cell proliferation over time and modulates the gene expression of transforming growth factor ß1 (TGF-ß1) and α-smooth muscle actin (α-SMA) at 48-72 h. After 6 days of treatment, a decrement of α-SMA protein levels was detected, proving the potential of biofiber as a valid therapeutic treatment for HTSs in an established wound healing process.

6.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686348

RESUMEN

In this work, four different active encapsulation methods, microfluidic (MF), sonication (SC), freeze-thawing (FT), and electroporation (EP), were investigated to load a model protein (bovine serum albumin-BSA) into neutral liposomes made from 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC):cholesterol (Chol) and charged liposomes made from DSPC:Chol:Dioleoyl-3-trimethylammonium propane (DOTAP), DSPC:Chol:1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), and DSPC:Chol:phosphatidylethanolamine (PE). The aim was to increase the protein encapsulation efficiency (EE%) by keeping the liposome size below 200 nm and the PDI value below 0.7, which warrants a nearly monodisperse preparation. Electroporation (100 V) yielded the best results in terms of EE%, with a dramatic increase in liposome size (>600 nm). The FT active-loading method, either applied to neutral or charged liposomes, allowed for obtaining suitable EE%, keeping the liposome size range below 200 nm with a suitable PDI index. Cationic liposomes (DSPC:Chol:DOTAP) loaded with the FT active method showed the best results in terms of EE% (7.2 ± 0.8%) and size (131.2 ± 11.4 nm, 0.140 PDI). In vitro release of BSA from AM neutral and charged liposomes resulted slower compared to PM liposomes and was affected by incubation temperature (37 °C, 4 °C). The empty charged liposomes tested for cell viability on Human Normal Dermal Fibroblast (HNDF) confirmed their cytocompatibility also at high concentrations (1010 particles/mL) and cellular uptake at 4 °C and 37 °C. It can be concluded that even if both microfluidic passive and active methods are more easily transferable to an industrial scale, the FT active-loading method turned out to be the best in terms of BSA encapsulation efficiencies, keeping liposome size below 200 nm.


Asunto(s)
Liposomas , Albúmina Sérica Bovina , Humanos , Electroporación , Terapia de Electroporación
7.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569489

RESUMEN

Vascular graft infections are a severe complication in vascular surgery, with a high morbidity and mortality. Prevention and treatment involve the use of antibiotic- or antiseptic-impregnated artificial vascular grafts, but currently, there are no commercially available infection-proof small-diameter vascular grafts (SDVGs). In this work we investigated the antimicrobic activity of two SDVGs prototypes loaded with tobramycin and produced via the electrospinning of drug-doped PLGA (polylactide-co-glycolide) solutions. Differences in rheological and conductivity properties of the polymer solutions resulted in non-identical fibre morphology that deeply influenced the hydration profile and consequently the in vitro cumulative drug release, which was investigated by using a spectrofluorimetric technique. Using DDSolver Excel add-in, modelling of the drug release kinetic was performed to evaluate the release mechanism involved: Prototype 1 showed a sustained and diffusive driven drug release, which allowed for the complete elution of tobramycin within 2 weeks, whereas Prototype 2 resulted in a more extended drug release controlled by both diffusion and matrix relaxation. Time-kill assays performed on S. aureus and E. coli highlighted the influence of burst drug release on the decay rate of bacterial populations, with Prototype 1 being more efficient on both microorganisms. Nevertheless, both prototypes showed good antimicrobic activity over the 5 days of in vitro testing.

8.
Front Bioeng Biotechnol ; 11: 1186351, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441194

RESUMEN

Introduction: The problem of organs' shortage for transplantation is widely known: different manufacturing techniques such as Solvent casting, Electrospinning and 3D Printing were considered to produce bioartificial scaffolds for tissue engineering purposes and possible transplantation substitutes. The advantages of manufacturing techniques' combination to develop hybrid scaffolds with increased performing properties was also evaluated. Methods: Scaffolds were produced using poly-L-lactide-co-caprolactone (PLA-PCL) copolymer and characterized for their morphological, biological, and mechanical features. Results: Hybrid scaffolds showed the best properties in terms of viability (>100%) and cell adhesion. Furthermore, their mechanical properties were found to be comparable with the reference values for soft tissues (range 1-10 MPa). Discussion: The created hybrid scaffolds pave the way for the future development of more complex systems capable of supporting, from a morphological, mechanical, and biological standpoint, the physiological needs of the tissues/organs to be transplanted.

9.
Pharmaceutics ; 15(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36986609

RESUMEN

Hypertrophic scars (HTSs) are aberrant structures that develop where skin is injured complexly and represent the result of a chronic inflammation as a healing response. To date, there is no satisfactory prevention option for HTSs, which is due to the complexity of multiple mechanisms behind the formation of these structures. The present work aimed to propose Biofiber (Biodegradable fiber), an advanced textured electrospun dressing, as a suitable solution for HTS formation in complex wounds. Biofiber has been designed as a 3-day long-term treatment to protect the healing environment and enhance wound care practices. Its textured matrix consists of homogeneous and well-interconnected Poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) electrospun fibers (size 3.825 ± 1.12 µm) loaded with Naringin (NG, 2.0% w/w), a natural antifibrotic agent. The structural units contribute to achieve an optimal fluid handling capacity demonstrated through a moderate hydrophobic wettability behavior (109.3 ± 2.3°), and a suitable balance between absorbency (389.8 ± 58.16%) and moisture vapor transmission rate (MVTR, 2645 ± 60.43 g/m2 day). The flexibility and conformability of Biofiber to the body surfaces is due to its innovative circular texture, that also allow it to obtain finer mechanical properties after 72 h in contact with Simulated Wound Fluid (SWF), with an elongation of 352.6 ± 36.10%, and a great tenacity (0.25 ± 0.03 Mpa). The ancillary action of NG results in a prolonged anti-fibrotic effect on Normal Human Dermal Fibroblasts (NHDF), through the controlled release of NG for 3 days. The prophylactic action was highlighted at day 3 with the down regulation of the major factors involved in the fibrotic process: Transforming Growth Factor ß1 (TGF-ß1), Collagen Type 1 alpha 1 chain (COL1A1), and α-smooth muscle actin (α-SMA). No significant anti-fibrotic effect has been demonstrated on Hypertrophic Human Fibroblasts derived from scars (HSF), proving the potential of Biofiber to minimize HTSs in the process of early wound healing as a prophylactic therapy.

10.
Drug Deliv Transl Res ; 13(8): 2058-2071, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-34642844

RESUMEN

3D printing has provided a new prospective in the manufacturing of personalized medical implants, including fistulas for haemodialysis (HD). In the current study, an optimized fused modelling deposition (FDM) 3D printing method has been validated, for the first time, to obtain cylindrical shaped fistulas. Printing parameters were evaluated for the manufacturing of fistulas using blank and 0.25% curcumin-loaded filaments that were produced by hot melt extrusion (HME). Four different fistula types have been designed and characterized using a variety of physicochemical characterization methods. Each design was printed three times to demonstrate printing process accuracy considering outer and inner diameter, wall thickness, width, and length. A thermoplastic polyurethane (TPU) biocompatible elastomer was chosen, showing good mechanical properties with a high elastic modulus and maximum elongation, as well as stability at high temperatures with less than 0.8% of degradation at the range between 25 and 250 °C. Curcumin release profile has been evaluated in a saline buffer, obtaining a low release (12%) and demonstrating drug could continue release for a longer period, and for as long as grafts should remain in patient body. Possibility to produce drug-loaded grafts using one-step method as well as 3D printing process and TPU filaments containing curcumin printability has been demonstrated.


Asunto(s)
Curcumina , Tecnología Farmacéutica , Humanos , Tecnología Farmacéutica/métodos , Liberación de Fármacos , Estudios Prospectivos , Impresión Tridimensional , Comprimidos/química
11.
Drug Deliv Transl Res ; 13(2): 593-607, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35978259

RESUMEN

This study is a proof of concept performed to evaluate process parameters affecting shape memory effect of copolymer poly-L-lactide-co-poly-ε-caprolactone (PLA:PCL) 70:30 ratio based nanofibrous scaffolds. A design of experiment (DOE) statistical approach was used to define the interaction between independent material and process variables related to electrospun scaffold manufacturing, such as polymer solution concentration (w/v%), spinning time (min), and needle size (Gauge), and their influence on Rf% (ability of the scaffold to maintain the induced temporary shape) and Rr% (ability of the scaffold to recover its original shape) outputs. A mathematical model was obtained from DOE useful to predict scaffold Rf% and Rr% values. PLA-PCL 15% w/v, 22G needle, and 20-min spinning time were selected to confirm the data obtained from theoretical model. Subsequent morphological (SEM), chemical-physical (GPC and DSC), mechanical (uniaxial tensile tests), and biological (cell viability and adhesion) characterizations were performed.


Asunto(s)
Nanofibras , Andamios del Tejido , Ingeniería de Tejidos , Poliésteres , Polímeros
12.
Polymers (Basel) ; 14(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36559782

RESUMEN

Graphene is a 2D crystal composed of carbon atoms in a hexagonal arrangement. From their isolation, graphene nanoplatelets (nCD) have revolutionized material science due to their unique properties, and, nowadays, there are countless applications, including drug delivery, biosensors, energy storage, and tissue engineering. Within this work, nCD were combined with PLA, a widely used and clinically relevant thermoplastic polymer, to produce advanced composite texturized electrospun fabric for the next-generation devices. The electrospinning manufacturing process was set-up by virtue of a proper characterization of the composite raw material and its solution. From the morphological point of view, the nCD addition permitted the reduction of the fiber diameter while the texture allowed more aligned fibers. After that, mechanical features of fabrics were tested at RT and upon heating (40 °C, 69 °C), showing the reinforcement action of nCD mainly in the texturized mats at 40 °C. Finally, mats' degradation in simulated physiological fluid was minimal up to 30 d, even if composite mats revealed excellent fluid-handling capability. Moreover, no toxic impurities and degradation products were pointed out during the incubation. This work gains insight on the effects of the combination of composite carbon-based material and texturized fibers to reach highly performing fabrics.

13.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430555

RESUMEN

Nowadays, antimicrobial resistance (AMR) represents a challenge for antibiotic therapy, mostly involving Gram-negative bacteria. Among the strategies activated to overcome AMR, the repurposing of already available antimicrobial molecules by encapsulating them in drug delivery systems, such as nanoparticles (NPs) and also engineered NPs, seems to be promising. Tobramycin is a powerful and effective aminoglycoside, approved for complicated infections and reinfections and indicated mainly against Gram-negative bacteria, such as Pseudomonas aeruginosa, Escherichia coli, Proteus, Klebsiella, Enterobacter, Serratia, Providencia, and Citrobacter species. However, the drug presents several side effects, mostly due to dose frequency, and for this reason, it is a good candidate for nanomedicine formulation. This review paper is focused on what has been conducted in the last 20 years for the development of Tobramycin nanosized delivery systems (nanoantibiotics), with critical discussion and comparison. Tobramycin was selected as the antimicrobial drug because it is a wide-spectrum antibiotic that is effective against both Gram-positive and Gram-negative aerobic bacteria, and it is characterized by a fast bactericidal effect, even against multidrug-resistant microorganisms (MDR).


Asunto(s)
Gentamicinas , Tobramicina , Tobramicina/farmacología , Tobramicina/uso terapéutico , Farmacorresistencia Microbiana , Aminoglicósidos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
14.
Int J Pharm ; 629: 122368, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36343906

RESUMEN

Nanomedicine consists in the application of nanotechnology in medicine to revolutionize the healthcare sector through transformative new diagnostic and therapeutic tools. In this field, nanostructures or nanocarriers (i.e., nanoparticles) are extensively used as a drug delivery system. Despite the well-defined profits offered by nanomedicines based on poly (lactic-co-glycolic acid) (PLGA), the major barriers hampering the launch of a nanoparticles-based product on the market are batch-to-batch variations and its lack of reproducibility from the benchtop to an industrial scale production. Currently, microfluidics technology has emerged as potential tool to achieve a continuous manufacturing with a precise control over fluids mixing and particles quality attributes. This work aims at defining a tailored strategy to produce PLGA NPs, exploiting a new microfluidic device. Moreover, Design of Experiments (DoE) and computational fluid dynamics approaches were exploited to understand the main process parameters and material attributes affecting the quality of the final product as well as the NPs manufacturing process. Finally, the ability to incorporate a drug into the PLGA nanoparticles was investigated by using Curcumin as model payload reaching encapsulation efficiency in the rank 28-44%. This paper is proposed as useful guide for the preparation of PLGA NPs by microfluidic technique.


Asunto(s)
Microfluídica , Nanopartículas , Microfluídica/métodos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Reproducibilidad de los Resultados , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Tamaño de la Partícula , Portadores de Fármacos/química
15.
Int J Pharm ; 629: 122363, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36336202

RESUMEN

By carefully controlling the dose administered and the drug release rate from drug-eluting implants, safety and efficacy of the therapeutic agent dispensed can be improved. The present work focuses on the promising advantages of 3D Bioprinting process in developing two layers' implantable scaffolds. The two layers have different functions, in order to ensure a more effective and synergistic breast cancer therapy. First layer involves use of polymers such as Poly- ε-Caprolactone (PCL) and Chitosan (CS), and incorporation of 5-Fluorouracil (5-FU). The aim of the first layer is releasing the drug within 4 weeks, obtaining a prolonged and modified release. According to in vitro drug release tests performed, ∼32 % of 5-FU was released after one month, after an initial burst effect of 17.22 %. The sudden release of the drug into the body would quickly reach an effective therapeutic concentration, while the drug sustained release maintains an effective therapeutic concentration range during the administration time. The second layer is made exclusively from PCL as polymeric matrix, into which Gold Nanoparticles (AuNPs) were subsequently loaded, and its main purpose is to be radiation enhancement. The long biodegradation time of PCL would make the non-soluble scaffold an alternative to conventional chemotherapy, optimizing drug release to the specific needs of the patients.


Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Humanos , Femenino , Poliésteres/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Oro/uso terapéutico , Fluorouracilo , Polímeros/uso terapéutico , Implantes de Medicamentos , Impresión Tridimensional
16.
Cancers (Basel) ; 14(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36358782

RESUMEN

Squamous cell carcinoma is the most common malignancy that arises in the head-and-neck district. Traditional treatment could be insufficient in case of recurrent and/or metastatic cancers; for this reason, more selective and enhanced treatments are in evaluation in preclinical and clinical trials to increase in situ concentration of chemotherapy drugs promoting a selectively antineoplastic activity. Among all cancer treatment types (i.e., surgery, chemotherapy, radiotherapy), electroporation (EP) has emerged as a safe, less invasive, and effective approach for cancer treatment. Reversible EP, using an intensive electric stimulus (i.e., 1000 V/cm) applied for a short time (i.e., 100 µs), determines a localized electric field that temporarily permealizes the tumor cell membranes while maintaining high cell viability, promoting cytoplasm cell uptake of antineoplastic agents such as bleomycin and cisplatin (electrochemotherapy), calcium (Ca2+ electroporation), siRNA and plasmid DNA (gene electroporation). The higher intracellular concentration of antineoplastic agents enhances the antineoplastic activity and promotes controlled tumor cell death (apoptosis). As secondary effects, localized EP (i) reduces the capillary blood flow in tumor tissue ("vascular lock"), lowering drug washout, and (ii) stimulates the immune system acting against cancer cells. After years of preclinical development, electrochemotherapy (ECT), in combination with bleomycin or cisplatin, is currently one of the most effective treatments used for cutaneous metastases and primary skin and mucosal cancers that are not amenable to surgery. To reach this clinical evidence, in vitro and in vivo models were preclinically developed for evaluating the efficacy and safety of ECT on different tumor cell lines and animal models to optimize dose and administration routes of drugs, duration, and intensity of the electric field. Improvements in reversible EP efficacy are under evaluation for HNSCC treatment, where the focus is on the development of a combination treatment between EP-enhanced nanotechnology and immunotherapy strategies.

17.
Int J Pharm ; 625: 122073, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35931393

RESUMEN

Biofiber is a new generation of highly absorbent, and textured bandage with patented fiber technology. Biofiber has a sophisticated texture that provides an optimum balance of moisture, flexibility, and conformability, and it has been developed with specific properties to treat complex injuries like burns. The dressing has been designed to be completely adaptable to human anatomy, and it can be fitted to any part of the body, adapting to all curves and jointures, as well as fitting the facial features. Prototypes of PLA-PCL-based textured bandages were developed by electrospinning, characterized, and evaluated for complex wound care. The texture is both esthetic and functional; fibers were uniformly sized (2.2 ± 0.8 and 4.5 ± 0.3 µm) and well interconnected. The texture facilitates vertical absorption of exudate up to 2.5 g/g of bandage, and the high contact angle values (120 - 100°) create an optimum balance of moisture for the healing process. The textured prototypes turned out to be extremely stable; no sign of bandage debris was found by the standard test, BS EN 13726-1.7. In addition, the round texture (3R) showed improvements in tensile strength (0.27 ± 0.019 MPa), ultimate tensile strength (0.83 ± 0.05 MPa) with higher breaking point (0.91 ± 0.05 MPa) compared to control (Mepilex Lite®). The amount of albumin (BSA) and Fibrinogen (Fb) adhered on textured fiber prototypes was calculated by BCA Assay, all prototypes demonstrated strong BSA (ranging from 81.66 ± 8.93 to 182.73 ± 2.07 µg protein/mg dressing) and enhanced Fb shielding (ranging from 108.25 ± 7.3 to 238.12 ± 17.76 µg protein/mg dressing). Their MVTR values ranged from 2313.27 ± 58.86 to 2603.33 ± 50.41 g/m2· day and vertical wicking heights were between 24.6 ± 2.5 and 29.3 ± 4.1 mm; biological tests demonstrated good compatibility of prototypes (cell vitality > 70 %), percentage of cells attachment was in-between 114 and 225 %. The extent of attachment depends on texture, differing topographical patterns presented higher attachment compared with both CTR + and 1P prototype (no texture). Cells were growth on textured fiber prototypes, and the extent of proliferation depend on incubation time.


Asunto(s)
Vendajes , Quemaduras , Exudados y Transudados , Humanos , Resistencia a la Tracción , Cicatrización de Heridas
18.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35887348

RESUMEN

This work focuses on formulating liposomes to be used in isolated kidney dynamic machine perfusion in hypothermic conditions as drug delivery systems to improve preservation of transplantable organs. The need mainly arises from use of kidneys from marginal donors for transplantation that are more exposed to ischemic/reperfusion injury compared to those from standard donors. Two liposome preparation techniques, thin film hydration and microfluidic techniques, are explored for formulating liposomes loaded with two model proteins, myoglobin and bovine serum albumin. The protein-loaded liposomes are characterized for their size by DLS and morphology by TEM. Protein releases from the liposomes are tested in PERF-GEN perfusion fluid, 4 °C, and compared to the in vitro protein release in PBS, 37 °C. Fluorescent liposome uptake is analyzed by fluorescent microscope in vitro on epithelial tubular renal cell cultures and ex vivo on isolated pig kidney in hypothermic perfusion conditions. The results show that microfluidics are a superior technique for obtaining reproducible spherical liposomes with suitable size below 200 nm. Protein encapsulation efficiency is affected by its molecular weight and isoelectric point. Lowering incubation temperature slows down the proteins release; the perfusion fluid significantly affects the release of proteins sensitive to ionic media (such as BSA). Liposomes are taken up by epithelial tubular renal cells in two hours' incubation time.


Asunto(s)
Liposomas , Diálisis Renal , Animales , Técnicas In Vitro , Riñón , Perfusión , Porcinos
19.
Materials (Basel) ; 15(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35897556

RESUMEN

Myocardial infarction is a major cause of death worldwide and remains a social and healthcare burden. Injectable hydrogels with the ability to locally deliver drugs or cells to the damaged area can revolutionize the treatment of heart diseases. Herein, we formulate a thermo-responsive and injectable hydrogel based on conjugated chitosan/poloxamers for cardiac repair. To tailor the mechanical properties and electrical signal transmission, gold nanoparticles (AuNPs) with an average diameter of 50 nm were physically bonded to oxidized bacterial nanocellulose fibers (OBC) and added to the thermosensitive hydrogel at the ratio of 1% w/v. The prepared hydrogels have a porous structure with open pore channels in the range of 50−200 µm. Shear rate sweep measurements demonstrate a reversible phase transition from sol to gel with increasing temperature and a gelation time of 5 min. The hydrogels show a shear-thinning behavior with a shear modulus ranging from 1 to 12 kPa dependent on gold concentration. Electrical conductivity studies reveal that the conductance of the polymer matrix is 6 × 10−2 S/m at 75 mM Au. In vitro cytocompatibility assays by H9C2 cells show high biocompatibility (cell viability of >90% after 72 h incubation) with good cell adhesion. In conclusion, the developed nanocomposite hydrogel has great potential for use as an injectable biomaterial for cardiac tissue regeneration.

20.
Drug Discov Today ; 27(10): 103321, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35850432

RESUMEN

Pain is a constant in our lives. The efficacy of drug therapy administered by the parenteral route is often limited either by the physicochemical characteristics of the drug itself or its adsorption-distribution-metabolism-excretion (ADME) mechanisms. One promising alternative is the design of innovative drug delivery systems that can improve the pharmacokinetics |(PK) and/or reduce the toxicity of traditionally used drugs. In this review, we discuss several products that have been approved by the main regulatory agencies (i.e., nano- and microsystems, implants, and oil-based solutions), highlighting the newest technologies that govern both locally and systemically the delivery of drugs. Finally, we also discuss the risk assessment of the scale-up process required, given the impact that this approach could have on drug manufacturing. Teaser: The management of pain by way of the parenteral route can be improved using complex drug delivery systems (e.g., micro- and nanosystems) which require high-level assessment and shorten the regulatory pathway.


Asunto(s)
Sistemas de Liberación de Medicamentos , Reposicionamiento de Medicamentos , Humanos , Dolor/tratamiento farmacológico , Preparaciones Farmacéuticas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...